Vector Calculus

Vector Calculus#

Below, \(\mathbf{A}\), \(\mathbf{B}\) \(\mathbf{C}\), and \(\mathbf{D}\) are vector fields (or constant vectors) and \(\phi\) and \(\psi\) are scalar functions. Then:

(473)#\[\begin{align*} \mathbf{A}\cdot (\mathbf{B}\times\mathbf{C}) = \mathbf{B}\cdot (\mathbf{C}\times \mathbf{A}) = \mathbf{C} \cdot ( \mathbf{A}\times \mathbf{B}). \end{align*}\]
(474)#\[\begin{align*} \mathbf{A}\times (\mathbf{B}\times \mathbf{C}) = (\mathbf{A}\cdot \mathbf{C}) \mathbf{B} - (\mathbf{A}\cdot \mathbf{B}) \mathbf{C}. \end{align*}\]
(475)#\[\begin{align*} (\mathbf{A}\times \mathbf{B})\cdot (\mathbf{C} \times \mathbf{D}) = (\mathbf{A}\cdot \mathbf{C}) (\mathbf{B}\cdot \mathbf{D}) - (\mathbf{A}\cdot \mathbf{D}) (\mathbf{B}\cdot \mathbf{C}) \end{align*}\]
(476)#\[\begin{align*} \mathbf{\nabla} \cdot (\phi \mathbf{A}) = \phi \mathbf{\nabla}\cdot \mathbf{A} + \nabla \phi \cdot \mathbf{A}. \end{align*}\]
(477)#\[\begin{align*} \mathbf{\nabla} \times (\phi \mathbf{A}) = \phi \mathbf{\nabla} \times \mathbf{A} + \nabla \phi \times \mathbf{A}. \end{align*}\]
(478)#\[\begin{align*} \mathbf{\nabla} \cdot (\mathbf{A}\times \mathbf{B}) = - \mathbf{A}\cdot \mathbf{\nabla} \times \mathbf{B} + \mathbf{B} \cdot \mathbf{\nabla} \times \mathbf{A}. \end{align*}\]
(479)#\[\begin{align*} \mathbf{\nabla} \times (\mathbf{A}\times \mathbf{B}) = - (\mathbf{A}\cdot \mathbf{\nabla}) \mathbf{B} + \mathbf{A} \mathbf{\nabla} \cdot \mathbf{B} + ( \mathbf{B} \cdot \mathbf{\nabla}) \mathbf{A} - \mathbf{B} \mathbf{\nabla} \cdot \mathbf{A}. \end{align*}\]
(480)#\[\begin{align*} \mathbf{\nabla} (\mathbf{A}\cdot \mathbf{B}) = (\mathbf{A}\cdot \mathbf{\nabla}) \mathbf{B} + \mathbf{A} \times \mathbf{\nabla} \times \mathbf{B} + ( \mathbf{B} \cdot \mathbf{\nabla}) \mathbf{A} + \mathbf{B} \times \mathbf{\nabla} \times \mathbf{A}. \end{align*}\]
(481)#\[\begin{align*} \mathbf{\nabla} \cdot \mathbf{\nabla} \phi = \Delta \phi, \end{align*}\]

where \(\Delta = \partial^2/\partial x^2 + \partial^2/\partial y^2 + \partial^2/\partial z^2\) provided that \((x,y,z)\) is an orthonormal basis.

(482)#\[\begin{align*} \mathbf{\nabla} \times \mathbf{\nabla} \times \mathbf{A}= - \Delta \mathbf{A} + \mathbf{\nabla} \mathbf{\nabla} \cdot \mathbf{A}. \end{align*}\]

Remark: The last formula is only valid in a Cartesian coordinate system. This means that the vector field \(\mathbf{A}\) must be decomposed on the Cartesian basis and the derivatives must be computed with respect to the corresponding Cartesian coordinates and then \(\Delta \mathbf{A}\) must be interpreted component-by-component: \(\Delta \mathbf{A}\)= (\(\Delta A_x\), \(\Delta A_y\), \(\Delta A_z)^{T}\), where \(A_x, A_y, A_z\) are components with respect to the Cartesian basis. The formula does not hold in cylindrical or spherical coordinates!.

(483)#\[\begin{align*} \mathbf{\nabla} \times \mathbf{\nabla} \phi =0. \end{align*}\]
(484)#\[\begin{align*} \mathbf{\nabla} \cdot (\mathbf{\nabla} \times \mathbf{A}) =0. \end{align*}\]

In addition, the following integral theorems apply (\(V\) is a volume with surface area \(S\) and outward unit normal \(\mathbf{n}\)).

Gauss’s Theorem (or divergence theorem):

(485)#\[\begin{align*} \int\!\!\int\!\!\int_{V} \, \mathbf{\nabla} \cdot \mathbf{A} \, dV = \int\!\!\int_{S} \, \mathbf{A}\cdot \mathbf{n} \, dS. \end{align*}\]

Apply this to the vector field \(\mathbf{A} = \phi \mathbf{\nabla} \psi\). Because of (476) and (481) holds \(\mathbf{\nabla}\cdot \mathbf{A}= \phi \Delta \psi + \mathbf{\nabla} \cdot \mathbf{\nabla} \psi\) and thus (Green’s Theorem):

(486)#\[\begin{align*} \int\!\!\int\!\!\int_{V}\, \phi \Delta \psi + \mathbf{\nabla} \phi \cdot \mathbf{\nabla} \psi \, dV= \int\!\!\int_{S} \, \phi \frac{\partial \psi }{\partial n} \, dS. \end{align*}\]

By subtracting the analogous relation from (486) with \(\phi\) and \(\psi\) interchanged, one gets:

(487)#\[\begin{align*} \int\!\!\int\!\!\int_{V} \, \phi \Delta \psi - \psi \Delta \phi \, dV= \int\!\!\int_{S} \, \phi \frac{\partial \psi }{\partial n} - \psi \frac{\partial \phi}{\partial n} \, dS. \end{align*}\]

By using (478) and Gauss’s theorem it follows furthermore that

(488)#\[\begin{split}\begin{align*} \int\!\!\int\!\!\int_{V} \mathbf{B}\cdot \mathbf{\nabla} \times \mathbf{A} dV- \int\!\!\int\!\!\int_{V} \mathbf{A}\cdot \mathbf{\nabla} \times \mathbf{B} dV&= \int\!\!\int_{S} \, \mathbf{n}\dot (\mathbf{A}\times \mathbf{B}) \, dS \\ &= \int\!\!\int_{S} \, (\mathbf{n} \times \mathbf{A})\cdot \mathbf{B}) \, dS \\ &= \int\!\!\int_{S} \,\mathbf{A}\cdot (\mathbf{n} \times \mathbf{B}) \, dS, \end{align*}\end{split}\]

where in the right-hand side we used (473).

Stokes’ Theorem (\(S\) is a possibly curved surface with contour \(C\)):

(489)#\[\begin{align*} \int\!\!\int_{S}\, \mathbf{\nabla} \times \mathbf{A} \cdot \mathbf{n} \, dS = \int_C \, \mathbf{A} \cdot d \mathbf{s}, \end{align*}\]

where \(\mathbf{n}\) is the unit vector field that is perpendicular to \(S\), which is in the direction to which a right-handed corkscrew points if it is rotated in the positive direction of the line integral along \(C\).

There is also an analogue of Green’s Theorem for the curl operator:

(490)#\[\begin{align*} \int\!\int\!\int_V \mathbf{\nabla} \times \mathbf{A} \cdot \mathbf{B} \, dS - \int\!\int\!\int_V \mathbf{A} \cdot \mathbf{\nabla} \times \mathbf{B} \, dS = \int\!\int_S \left(\mathbf{n}\times \mathbf{A} \right) \cdot \mathbf{B}\, dS = -\int\!\int_S \mathbf{A} \cdot \left(\mathbf{n}\times \mathbf{B} \right) \, dS. \end{align*}\]