8. Some equations and constants#

8.1. Physical constants#

Table 8.1 Some physical constants with their values in standard units.#

Name

Symbol

Value

Speed of light

\(c\)

\(3.00 \cdot 10^{8}\;\mathrm{m}/\mathrm{s}\)

Elementary charge

\(e\)

\(1.60 \cdot 10^{-19}\;\mathrm{C}\)

Electron mass

\(m_e\)

\(9.11 \cdot 10^{-31}\;\mathrm{kg} = 0.511\;\mathrm{MeV}/c^2\)

Proton mass

\(m_p\)

\(1.67 \cdot 10^{-27}\;\mathrm{kg} = 938\;\mathrm{MeV}/c^2\)

Gravitational constant

\(G\)

\(6.67 \cdot 10^{-11}\;\mathrm{N}\cdot\mathrm{m}^2/\mathrm{kg}^2\)

Planck’s constant

\(h\)

\(6.63 \cdot 10^{-34}\;\mathrm{J}\cdot\mathrm{s}\)

\(\hbar = h / 2 \pi\)

\(1.05 \cdot 10^{-34}\;\mathrm{J}\cdot\mathrm{s}\)

Permittivity of space

\(\varepsilon_0\)

\(8.85419 \cdot 10^{-12}\;\mathrm{C}^2/\mathrm{J}\cdot\mathrm{m}\)

Boltzmann’s constant

\(\kB\)

\(1.38 \cdot 10^{-23}\;\mathrm{J}/\mathrm{K}\)

Bohr radius

\(a\)

\(\frac{4\pi \varepsilon_0 \hbar^2}{e^2 m_\mathrm{e}} = 5.29177 \cdot 10^{-11}\;\mathrm{m}\)

Fine structure constant

\(\alpha\)

\(\frac{e^2}{4\pi\varepsilon_0 \hbar c} = \frac{1}{137.036}\)

Rydberg energy

\(R_\mathrm{E}\)

\(\frac{e^4 m_\mathrm{e}}{2(4\pi\varepsilon_0 \hbar)^2} = \frac12 \left(m_\mathrm{e} c^2\right) \alpha^2 = 13.6057\;\mathrm{eV}\).

8.2. Wave-particle duality#

The de Broglie energy and momentum are given by:

\[\begin{split}\begin{align*} E &= h f = \hbar \omega, \\ p &= h/\lambda = \hbar k. \end{align*}\end{split}\]

8.3. Schrödinger equation#

The general Schrödinger equation in three dimensions is given by:

(8.1)#\[ i \hbar \frac{\partial \Psi(\bm{x}, t)}{\partial t} = - \frac{\hbar^2}{2m} \nabla^2 \Psi(\bm{x}, t) + V(\bm{x}) \Psi(\bm{x}, t). \]

In one dimension, the time-independent version of the Schrödinger equation is:

(8.2)#\[ \hat{H} \psi(x) = -\frac{\hbar^2}{2m} \frac{\mathrm{d}^2 \psi(x)}{\mathrm{d}x^2} + V(x) \psi(x) = E \psi(x). \]

8.4. Operators#

The position and momentum operators are given by

\[\begin{split}\begin{align*} \hat{x} \Psi(x,t) &= x \Psi(x,t), \\ \hat{p} \Psi(x,t) &= - i \hbar \frac{\partial \Psi(x,t)}{\partial x}. \end{align*}\end{split}\]

The expectation value of any operator \(\hat{Q}\) can be calculated through

(8.3)#\[ \Braket{\hat{Q}} = \int_{-\infty}^\infty \Psi^*(x,t) \hat{Q} \Psi(x,t) \mathrm{d}x. \]

The commutator \(\left[ \hat{A}, \hat{B} \right]\) of two operators is defined as

\[ \left[ \hat{A}, \hat{B} \right] = \hat{A}\hat{B} - \hat{B}\hat{A}. \]

For any two Hermitian operators \(\hat{A}\) and \(\hat{B}\), we have the general uncertainty principle

\[ \sigma_A \sigma_B \geq \left| \frac{1}{2i} \Braket{\left[ \hat{A}, \hat{B} \right]} \right|. \]

The time evolution of the expectation value of an operator is given by

(8.4)#\[ \frac{\mathrm{d}}{\mathrm{d}t} \Braket{\hat{Q}} = \frac{i}{\hbar} \Braket{\left[ \hat{H}, \hat{Q} \right]} + \Braket{ \frac{\partial \hat{Q}}{\partial t}}, \]

where \(\hat{H}\) is the Hamiltonian of the system.

8.5. Spin#

The operators for the \(x\), \(y\) and \(z\) component of the spin satisfy the commutation relations

(8.5)#\[\begin{split}\begin{align*} \left[ \hat{S}_x, \hat{S}_y \right] &= i \hbar \hat{S}_z, \\ \left[ \hat{S}_y, \hat{S}_z \right] &= i \hbar \hat{S}_x, \\ \left[ \hat{S}_z, \hat{S}_x \right] &= i \hbar \hat{S}_y. \end{align*}\end{split}\]

For a spin-1/2 particle in the basis of the eigenvectors \(\chi_{+} = \left(\begin{array}{c}1\\ 0 \end{array}\right)\) and \(\chi_{-} = \left(\begin{array}{c}0\\ 1 \end{array}\right)\) of the \(\hat{S}_z\) operator, the spin operators are given by the matrix expressions:

(8.6)#\[\begin{split}\begin{align*} \hat{S}_x &= \frac{\hbar}{2} \hat{\bm{\sigma}}_x = \frac{\hbar}{2} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \\ \hat{S}_y &= \frac{\hbar}{2} \hat{\bm{\sigma}}_y = \frac{\hbar}{2} \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \\ \hat{S}_z &= \frac{\hbar}{2} \hat{\bm{\sigma}}_z = \frac{\hbar}{2} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \end{align*}\end{split}\]

8.6. Mathematical identities#

8.6.1. Goniometric functions#

\[\begin{split}\begin{align*} e^{i\phi} &= \cos(\phi) + i \sin(\phi) \\ \sin(\phi) &= \frac{1}{2i} \left( e^{i \phi} - e^{-i \phi} \right) \\ \cos(\phi) &= \frac12 \left( e^{i \phi} + e^{-i \phi} \right) \\ 1 &= \sin^2(\phi) + \cos^2(\phi) \\ \sin(2 \phi) &= 2 \sin(\phi) \cos(\phi)\\ \cos(2\phi) &= \cos^2(\phi)-\sin^2(\phi) \\ \sin(a \pm b) &= \sin(a) \cos(b) \pm \sin(b) \cos(a) \\ \cos(a \pm b) &= \cos(a) \cos(b) \pm \sin(a) \sin(b) \end{align*}\end{split}\]

8.6.2. Exponential integrals#

(8.7)#\[ \int_0^\infty x^n e^{-x/a} \mathrm{d}x = n!\, a^{n+1} \qquad \text{for any integer } n. \]

8.6.3. Some goniometric integrals#

The following hold for any integers \(m\) and \(n\).

\[\begin{split}\begin{align*} \int_0^L \sin\left(\frac{m \pi x}{L} \right) \sin\left(\frac{n \pi x}{L} \right) \mathrm{d}x &= \frac{L}{2} \delta_{mn}.\\ \int_0^L \cos\left(\frac{m \pi x}{L} \right) \cos\left(\frac{n \pi x}{L} \right) \mathrm{d}x &= \frac{L}{2} \delta_{mn}. \\ \int_0^L \sin\left(\frac{n \pi x}{L} \right) \cos\left(\frac{n \pi x}{L} \right) \mathrm{d}x &= 0. \\ \int_0^L \sin\left(\frac{m \pi x}{L} \right) \cos\left(\frac{n \pi x}{L} \right) \mathrm{d}x &= \frac{1-(-1)^{m+n}}{m^2-n^2} \frac{L m}{\pi}. \\ \int_0^L x \sin^2\left(\frac{n \pi x}{L} \right) \mathrm{d}x = \int_0^L x \cos^2\left(\frac{n \pi x}{L} \right) \mathrm{d}x &= \frac{L^2}{4}. \\ \int_0^L x \sin\left(\frac{\pi x}{L} \right) \sin\left(\frac{2 \pi x}{L} \right) \mathrm{d}x &= - \frac{8 L^2}{9 \pi^2}. \\ \int_0^L x \cos\left(\frac{\pi x}{L} \right) \cos\left(\frac{2 \pi x}{L} \right) \mathrm{d}x &= - \frac{10 L^2}{9 \pi^2}. \\ \int_0^L x \sin\left(\frac{n \pi x}{L} \right) \cos\left(\frac{n \pi x}{L} \right) \mathrm{d}x &= -\frac{L^2}{4 n \pi}. \end{align*}\end{split}\]

For any \(a \neq 0\), we have the indefinite integrals

\[\begin{split}\begin{align*} \int x \sin(ax) \,\mathrm{d}x &= \frac{1}{a^2} \sin(ax) - \frac{x}{a} \cos(ax), \\ \int x \cos(ax) \,\mathrm{d}x &= \frac{1}{a^2} \cos(ax) + \frac{x}{a} \sin(ax). \end{align*}\end{split}\]

8.6.4. Some Gaussian integrals#

Gaussian integrals are integrals over the Gaussian distribution \(\exp(-x^2)\) (aka the normal distribution). In general, these cannot be evaluated in closed form, and we define the error function as the integral:

(8.8)#\[ \mathrm{erf}(x) = \frac{2}{\sqrt{\pi}} \int_0^x e^{-y^2} \mathrm{d}y. \]

There are however a number of Gaussian integrals that can be evaluated explicitly: those over all of \(\mathbb{R}\). Of course, as the Gaussian distribution is symmetric, we can also find the integrals from plus or minus infinity to the point of symmetry.

(8.9)#\[\begin{split}\begin{align*} \int_{-\infty}^\infty e^{-a x^2} \mathrm{d}x &= \sqrt{\frac{\pi}{a}}. \\ \int_{-\infty}^\infty e^{-a x^2 + b x + c} \mathrm{d}x &= \sqrt{\frac{\pi}{a}} \exp\left(\frac{b^2}{4a}+c\right). \\ \int_{-\infty}^\infty x^n e^{-a x^2} \mathrm{d}x &= 0 \qquad \text{for any odd value of } n. \ \end{align*}\end{split}\]
(8.10)#\[\begin{align*} \int_{-\infty}^\infty x^n e^{-a x^2} \mathrm{d}x &= \frac{1 \cdot 3 \cdot 5 \cdots (n-1) \sqrt{\pi}}{2^{n/2} a^{(n+1)/2}} \qquad \text{for any even value of } n. \end{align*}\]

Note that we can get (8.10) by repeated differentiation of (8.9) with respect to \(a\).

8.6.5. Vector derivatives#

The expressions below are in Cartesian (\(x, y, z\)), cylindrical (\(\rho, \phi, z\)) and spherical (\(r, \theta, \phi\)) coordinates.

Gradient:

(8.11)#\[\begin{split}\begin{align*} \bm{\nabla} f(\bm{r}) &= \bm{\nabla} f(x, y, z) = \begin{pmatrix} \partial_x f \\ \partial_y f \\ \partial_z f \end{pmatrix} = \frac{\partial f}{\partial x} \bm{\hat{x}} + \frac{\partial f}{\partial y} \bm{\hat{y}} + \frac{\partial f}{\partial z} \bm{\hat{z}}, \\ &= \bm{\nabla} f(\rho, \phi, z) = \frac{\partial f}{\partial \rho} \bm{\hat{\rho}} + \frac{1}{\rho} \frac{\partial f}{\partial \phi} \bm{\hat{\phi}} + \frac{\partial f}{\partial z} \bm{\hat{z}}, \\ &= \bm{\nabla} f(r, \theta, \phi) = \frac{\partial f}{\partial r} \bm{\hat{r}} + \frac{1}{r} \frac{\partial f}{\partial \theta} \bm{\hat{\theta}} + \frac{1}{r \sin(\theta)} \frac{\partial f}{\partial \phi} \bm{\hat{\phi}}. \end{align*}\end{split}\]

Divergence:

(8.12)#\[\begin{split}\begin{align*} \bm{\nabla} \cdot \bm{v} &= \left( \partial_x, \partial_y, \partial_z \right) \cdot \begin{pmatrix} v_x \\ v_y \\ v_z \end{pmatrix} = \frac{\partial v_x}{\partial x} + \frac{\partial v_y}{\partial y} + \frac{\partial v_z}{\partial z}, \\ &= \frac{1}{\rho} \frac{\partial }{\partial \rho} \left( \rho v_\rho \right) + \frac{1}{\rho} \frac{\partial v_\phi}{\partial \phi} + \frac{\partial v_z}{\partial z}, \\ &= \frac{1}{r^2} \frac{\partial }{\partial r} \left( r^2 v_r \right) + \frac{1}{r \sin(\theta)} \frac{\partial }{\partial \theta} \left(\sin(\theta) v_\theta\right) + \frac{1}{r \sin(\theta)} \frac{\partial v_\phi}{\partial \phi}. \end{align*}\end{split}\]

Curl:

(8.13)#\[\begin{split}\begin{align*} \bm{\nabla} \times \bm{A} &= \left( \partial_x, \partial_y, \partial_z \right) \times \begin{pmatrix} A_x \\ A_y \\ A_z \end{pmatrix} = \begin{pmatrix} \partial_y A_z - \partial_z A_y \\ \partial_z A_x - \partial_x A_z \\ \partial_x A_y - \partial_y A_x \end{pmatrix}, \\ &= \left( \frac{1}{\rho} \frac{\partial v_z}{\partial \phi} - \frac{\partial v_\phi}{\partial z} \right) \bm{\hat{\rho}} + \left( \frac{\partial v_\rho}{\partial z} - \frac{\partial v_z}{\partial \rho} \right) \bm{\hat{\phi}} + \frac{1}{\rho} \left( \frac{\partial }{\partial \rho} \left( \rho v_\phi \right) - \frac{\partial v_\rho}{\partial \phi} \right) \bm{\hat{z}}, \\ &= \frac{1}{r \sin(\theta)} \left[ \frac{\partial }{\partial \theta} \left(v_\phi \sin(\theta) \right) - \frac{\partial \phi}{\partial v_\theta} \right] \bm{\hat{r}} + \frac{1}{r} \left[ \frac{1}{\sin(\theta)} \frac{\partial v_r}{\partial \phi} - \frac{\partial }{\partial r}\left(r v_\phi\right) \right] \bm{\hat{\theta}} + \frac{1}{r} \left[ \frac{\partial }{\partial r}\left(r v_\phi\right) - \frac{\partial v_r}{\partial \theta} \right] \bm{\hat{\phi}} \end{align*}\end{split}\]

Laplacian:

(8.14)#\[\begin{split}\begin{align*} \nabla^2 f &= \bm{\nabla} \cdot \left(\bm{\nabla} f \right) = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2}, \\ &= \frac{1}{\rho} \frac{\partial }{\partial \rho} \left( \rho \frac{\partial f}{\partial \rho} \right) + \frac{1}{\rho^2} \frac{\partial^2 f}{\partial \phi^2} + \frac{\partial^2 f}{\partial z^2}, \\ &= \frac{1}{r^2} \frac{\partial }{\partial r} \left( r^2 \frac{\partial f}{\partial r} \right) + \frac{1}{r^2 \sin(\theta)} \frac{\partial }{\partial \theta} \left(\sin(\theta) \frac{\partial f}{\partial \theta}\right) + \frac{1}{r^2 \sin^2(\theta)} \frac{\partial^2 f}{\partial \phi^2}. \end{align*}\end{split}\]