8.1. Symmetric Matrices#

8.1.1. Introduction#

Definition 8.1.1

A matrix \(A\) is called a symmetric matrix if

\[ A^T = A. \]

Note that this definition implies that a symmetric matrix must be a square matrix.

Example 8.1.1

The matrices

\[\begin{split} A_1 = \begin{bmatrix} 2&\class{blue}3&\class{red}4\\\class{blue}3&1&\class{green}5 \\\class{red}4&\class{green}5&7 \end{bmatrix} \quad \text{and} \quad A_2 = \begin{bmatrix} 0&2&3&4\\ 2&0&1&5 \\ 3&1&0&6 \\ 4&5&6&7\end{bmatrix} \end{split}\]

are symmetric. The matrices

\[\begin{split} A_3 = \begin{bmatrix} 2&3&4\\2&3&4 \\ 2&3&4 \end{bmatrix} \quad \text{and} \quad A_4 = \begin{bmatrix} 0&2&3&0\\ 2&0&1&0 \\ 3&1&0&0 \\ \end{bmatrix} \end{split}\]

are not symmetric.

Symmetric matrices appear in many different contexts. In statistics the covariance matrix is an example of a symmetric matrix. In engineering the so-called elastic strain matrix and the moment of inertia tensor provide examples.

The crucial thing about symmetric matrices is stated in the main theorem of this section.

Theorem 8.1.1

Every symmetric matrix \(A\) is orthogonally diagonalizable.

By this we mean: there exist an orthogonal matrix \(Q\) and a diagonal matrix \(D\) for which

\[ A = QDQ^{-1} = QDQ^T. \]

Conversely, every orthogonally diagonalizable matrix is symmetric.

This theorem is known as the Spectral Theorem for Symmetric Matrices. In other contexts the word spectrum of a transformation is used for the set of eigenvalues.

So, for a symmetric matrix an orthonormal basis of eigenvectors always exists. For the inertia tensor of a 3D body such a basis corresponds to the (perpendicular) principal axes.

Of the converse of Theorem 8.1.1

Recall that an orthogonal matrix is a matrix \(Q\) for which \(Q^{-1} = Q^T\).

With this reminder it is just a one line proof. If \(A = QDQ^{-1} = QDQ^T\),

then \(A^T = (QDQ^{-1} )^T = (Q^{-1} )^TD^TQ^T = (Q^T)^TD^TQ^T = QDQ^T = A\).

The proof of the other implication we postpone till Subsection 8.1.3.

We end this introductory section with one representative example.

Example 8.1.2

Let \(A\) be given by \(A = \begin{bmatrix} 1&2\\2&-2 \end{bmatrix}\).

The eigenvalues are found via

\[\begin{split} \det{(A - \lambda I)} = \begin{vmatrix} 1-\lambda&2\\2&-2-\lambda \end{vmatrix} = (1-\lambda)(-2-\lambda) -4 = \lambda^2 +\lambda -6 = (\lambda-2)(\lambda+3) . \end{split}\]

They are \(\lambda_1 = 2\) and \(\lambda_2 = -3\).

Corresponding eigenvectors are \(\mathbf{v}_1 = \begin{bmatrix} 2\\1 \end{bmatrix}\) for \(\lambda_1\), and \(\mathbf{v}_2 = \begin{bmatrix} 1\\-2 \end{bmatrix}\).

The eigenvectors are orthogonal,

\[\begin{split} \mathbf{v}_1 \ip \mathbf{v}_2 = \begin{bmatrix} 2\\1 \end{bmatrix}\ip \begin{bmatrix} 1\\-2 \end{bmatrix} = 2 - 2 = 0, \end{split}\]

and \(A\) can be diagonalized as

\[\begin{split} A = PDP^{-1} = \begin{bmatrix}2&1\\1&-2 \end{bmatrix}\begin{bmatrix}2 & 0\\0& -3 \end{bmatrix} \begin{bmatrix}2&1\\1&-2 \end{bmatrix}^{-1}. \end{split}\]

In Figure 8.1.1 the image of the unit circle under the transformation \(\vect{x} \mapsto A\vect{x}\) is shown. \(\vect{q}_1\) and \(\vect{q}_2\) are two orthonormal unit eigenvectors.

../_images/Fig-SymmetricMat-Evectors.svg

Fig. 8.1.1 The transformation \(T(\vect{x}) = \begin{bmatrix} 1&2\\2&-2 \end{bmatrix}\vect{x}\).#

Furthermore, if we normalize the eigenvectors, i.e., the columns of \(P\), we find the following diagonalization of \(A\) with an orthogonal matrix \(Q\):

\[\begin{split} A = QDQ^{-1} = \begin{bmatrix}2/\sqrt{5}&1/\sqrt{5}\\1/\sqrt{5}&-2/\sqrt{5} \end{bmatrix}\begin{bmatrix}2 & 0\\0& -3 \end{bmatrix} \begin{bmatrix}2/\sqrt{5}&1/\sqrt{5}\\1/\sqrt{5}&-2/\sqrt{5} \end{bmatrix}^{-1}. \end{split}\]

8.1.2. The essential properties of symmetric matrices#

Proposition 8.1.1

Suppose \(A\) is a symmetric matrix.

If \(\mathbf{v}_1\) and \(\mathbf{v}_2\) are eigenvectors of \(A\) for different eigenvalues, then \(\mathbf{v}_1\perp \mathbf{v}_2\).

Proof of Proposition 8.1.1

Suppose \(\mathbf{v}_1\) and \(\mathbf{v}_2\) are eigenvectors of the symmetric matrix \(A\) for the different eigenvalues \(\lambda_1,\lambda_2\). We want to show that \(\mathbf{v}_1 \ip \mathbf{v}_2 = 0\).

The trick is to consider the expression

(8.1.1)#\[(A\mathbf{v}_1) \ip \mathbf{v}_2.\]

On the one hand

\[ (A\mathbf{v}_1) \ip \mathbf{v}_2 = (\lambda_1\mathbf{v}_1) \ip \mathbf{v}_2 = \lambda_1(\mathbf{v}_1 \ip \mathbf{v}_2). \nonumber \]

On the other hand

\[ (A\mathbf{v}_1) \ip \mathbf{v}_2 = (A\mathbf{v}_1)^T \mathbf{v}_2 =\mathbf{v}_1^TA^T \mathbf{v}_2. \nonumber \]

Since we assumed that \(A^T = A\) we can extend the chain of identities:

\[ \mathbf{v}_1^TA^T \mathbf{v}_2 = \mathbf{v}_1^T A \mathbf{v}_2 =\mathbf{v}_1^T (A \mathbf{v}_2) = \mathbf{v}_1^T (\lambda_2 \mathbf{v}_2) = \lambda_2(\mathbf{v}_1^T \mathbf{v}_2) = \lambda_2(\mathbf{v}_1 \ip \mathbf{v}_2). \nonumber \]

So we have shown that

\[ (A\mathbf{v}_1) \ip \mathbf{v}_2 = \lambda_1(\mathbf{v}_1 \ip \mathbf{v}_2) = \lambda_2(\mathbf{v}_1 \ip \mathbf{v}_2). \nonumber \]

Since

\[ \lambda_1 \neq \lambda_2, \nonumber \]

it follows that indeed

\[ \mathbf{v}_1\ip \mathbf{v}_2 = 0,\]

as was to be shown.

Exercise 8.1.1

Prove the following slight generalization of Proposition 8.1.1.

If \(\vect{u}\) is an eigenvector of \(A\) for the eigenvalue \(\lambda\), and \(\vect{v}\) is an eigenvector of \(A^T\) for a different eigenvalue \(\mu\), then \(\vect{u} \perp \vect{v}\).

Proposition 8.1.2

All eigenvalues of symmetric matrices are real.

The easiest proof is via complex numbers. Feel free to skip it, in particular when you don’t feel comfortable with complex numbers.

Example 8.1.3

Let \(A = \begin{bmatrix} a&b\\b&d \end{bmatrix} \).

Then the characteristic polynomial is computed as

\[\begin{split} \begin{vmatrix} a-\lambda&b\\b&d-\lambda \end{vmatrix} = (a-\lambda)(d-\lambda) - b^2 = \lambda^2 - (a+d)\lambda + ad - b^2. \nonumber \end{split}\]

The discriminant of this second order polynomial is given by

\[ D = (a+d)^2 -4(ad -b^2) = a^2+d^2 - 2ad + 4b^2 = (a-d)^2 + 4b^2 \geq 0. \nonumber \]

The discriminant is non-negative, so the characteristic polynomial has only real roots, and consequently the eigenvalues of the matrix are real.

Obviously, an elementary approach like this will soon get very complicated for larger \(n \times n\) matrices.

Lastly we come to the third of three essential properties of symmetric matrices.

Proposition 8.1.3

For each eigenvalue of a symmetric matrix the geometric multiplicity is equal to the algebraic multiplicity.

We will incorporate the proof of this proposition into the proof of the main theorem in Subsection 8.1.3. For now, we will look at a few examples.

Example 8.1.4

We will verify that the symmetric matrix \(A = \begin{bmatrix} 1 & 0 & 1\\0 & 1 & 2 \\ 1 & 2 & 5 \end{bmatrix}\) is diagonalizable and has mutually orthogonal eigenvectors.

We first compute the characteristic polynomial.

Expansion along the first column gives

\[\begin{split} \begin{array}{rcl} \begin{vmatrix} 1-\lambda & 0 & 1\\0 & 1-\lambda & 2 \\ 1 & 2 & 5-\lambda \end{vmatrix} &=& (1-\lambda)\begin{vmatrix} 1-\lambda & 2 \\ 2 & 5-\lambda\end{vmatrix} + 1\cdot\begin{vmatrix} 0 & 1 \\ 1-\lambda & 2\end{vmatrix} \\ &=& (1-\lambda)\big((1-\lambda)(5-\lambda) -4 \big)- (1-\lambda) \\ &=& (1-\lambda) (\lambda^2-6\lambda) = (1-\lambda) (\lambda-6)\lambda. \end{array} \nonumber \end{split}\]

So \(A\) has the real eigenvalues \(\lambda_{1} = 1\), \(\lambda_2 = 6\) and \(\lambda_3 = 0\). Since all eigenvalues have algebraic multiplicity 1, the corresponding eigenvectors will give a basis of eigenvectors, and we can immediately conclude that \(A\) is diagonalizable.

The eigenvectors are found to be

\[\begin{split} \mathbf{v}_1 = \begin{bmatrix} 2 \\-1 \\ 0 \end{bmatrix} \text{ for } \lambda_1 = 1, \quad \mathbf{v}_2 = \begin{bmatrix} 1 \\ 2 \\ 5 \end{bmatrix} \text{ for } \lambda_2, \quad \mathbf{v}_3 = \begin{bmatrix} 1 \\ 2 \\ -1 \end{bmatrix} \text{ for } \lambda_3. \nonumber \end{split}\]

We see: the three eigenvectors form an orthogonal threesome, in accordance with Proposition 8.1.1.

Example 8.1.5

Consider the matrix \(A = \begin{bmatrix} 2&2&4\\2 & -1 & 2 \\ 4&2&2 \end{bmatrix}\).

A (rather involved) computation yields the eigenvalues \(\lambda_{1,2} = -2\) and \(\lambda_3 = 7\). Indeed all eigenvalues are real, conforming to Proposition 8.1.2.

Next we find the eigenvectors and the geometric multiplicities of the eigenvalues.

For \(\lambda = -2\) we find via row reduction

\[\begin{split} [A - (-2)I\,|\,\mathbf{0}] = \left[\begin{array}{ccc|c} 4&2&4&0\\2 & 1 & 2 &0\\ 4&2&4&0\end{array}\right] \sim \left[\begin{array}{ccc|c} 2&1&2&0\\0&0&0&0 \\0&0&0&0\end{array}\right] \nonumber \end{split}\]

the two linearly independent eigenvectors \(\mathbf{v}_1 = \begin{bmatrix} 1 \\ 0 \\ -1\end{bmatrix}\) and \(\mathbf{v}_2 = \begin{bmatrix} 1 \\ -2 \\ 0\end{bmatrix}\). The geometric multiplicity of \(\lambda_{1,2}\) is equal to 2. The other eigenvalue has algebraic multiplicity 1, so its geometric multiplicity has to be 1 as well. With this Proposition 8.1.3 is verified.

Lastly we leave it to you to check that an eigenvector for \(\lambda_3 = 7\) is given by \(\mathbf{v}_3 = \begin{bmatrix} 2 \\ 1 \\ 2\end{bmatrix}\). And that both \(\mathbf{v}_3 \perp \mathbf{v}_1\) and \(\mathbf{v}_3 \perp \mathbf{v}_2\), so that Proposition 8.1.1 is satisfied as well.

8.1.3. Orthogonal Diagonalizability of Symmetric Matrices#

Let us restate the main theorem (Theorem 8.1.1) about symmetric matrices:

A matrix \(A\) is symmetric if and only if it is orthogonally diagonalizable.

Note that this also establishes the property that for each eigenvalue of a symmetric matrix the geometric multiplicity equals the algebraic multiplicity (Proposition 8.1.3).

We will put the intricate proof at the end of the subsection, and first consider two examples.

The first example is a continuation of the earlier Example 8.1.5.

Example 8.1.6

The matrix \(A = \begin{bmatrix} 2&2&4\\2 & -1 & 2 \\ 4&2&2 \end{bmatrix}\) was shown to have the eigenvalues/eigenvectors

\[\begin{split} \lambda_{1,2} = -2, \quad \mathbf{v}_1 = \begin{bmatrix} 1 \\ 0 \\ -1\end{bmatrix}, \, \mathbf{v}_2 = \begin{bmatrix} 1 \\ -2 \\ 0\end{bmatrix}, \quad \lambda_3 = 7, \quad \mathbf{v}_3 = \begin{bmatrix} 2 \\ 1 \\ 2\end{bmatrix}. \end{split}\]

The pairs \(\mathbf{v}_1, \mathbf{v}_3\) and \(\mathbf{v}_2, \mathbf{v}_3\) are ‘automatically’ orthogonal.

For the eigenspace \(E_{-2} = \Span{\mathbf{v}_1, \mathbf{v}_2}\) we can use Gram-Schmidt to get an orthogonal basis:

\[\begin{split} \mathbf{u}_1 = \mathbf{v}_1, \quad \mathbf{u}_2 = \mathbf{v}_2 - \dfrac{\mathbf{v}_2 \ip \mathbf{u}_1}{\mathbf{u}_1 \ip \mathbf{u}_1} \mathbf{u}_1 = \dfrac12\begin{bmatrix} 1 \\ -4 \\ 1\end{bmatrix}. \end{split}\]

Normalizing the orthogonal basis \(\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{v}_3\}\) and putting them side by side in a matrix yields the orthogonal matrix

\[\begin{split} Q = \begin{bmatrix} \dfrac{1}{\sqrt{2}} & \dfrac{1}{\sqrt{18}} & \dfrac{2}{3} \\ 0 & \dfrac{-4}{\sqrt{18}} & \dfrac{1}{3}\\ \dfrac{-1}{\sqrt{2}} & \dfrac{1}{\sqrt{18}} & \dfrac{2}{3} \end{bmatrix}. \end{split}\]

The conclusion becomes that

\[\begin{split} A = QDQ^{-1} = QDQ^T, \quad \text{where still} \,\,\, D = \begin{bmatrix} -2 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & 7\end{bmatrix}. \end{split}\]

One more example before we get to the proof (or you jump over to Section 8.1.4).

Example 8.1.7

Let the symmetric matrix \(A\) be given by \( A = \begin{bmatrix} 1 & 2 & 2 & 0 \\ 2 & -1 & 0 & 2 \\ 2 & 0 & -1 & -2 \\ 0 & 2 & -2 & 1 \end{bmatrix}\).

The hard part is to find the eigenvalues. (I.e., how to solve an equation of the order four?!) Once we know what the eigenvalues are, the other steps are ‘routine’.

It appears that \(A\) has the double eigenvalues \(\lambda_{1,2} = 3\) and \(\lambda_{3,4} = -3\).

To find the eigenvectors for the eigenvalue 3 we row reduce the matrix \((A - 3I)\).

\[\begin{split} \left[\begin{array}{cccc}1-3 & 2 & 2 & 0\\ 2 & -1-3 & 0 & 2 \\ 2 & 0 & -1-3 & -2 \\ 0 & 2 & -2 & 1-3 \end{array} \right] \,\, \sim \,\,\ldots\,\, \sim \,\, \left[\begin{array}{cccc}1 & 0 & -2 & -1\\ 0 & 1 & -1 & -1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{array} \right]. \end{split}\]

We can read off two linearly independent eigenvectors

\[\begin{split} \vect{v}_1 = \left[\begin{array}{c} 1 \\ 1 \\ 0 \\ 1 \end{array} \right], \quad \vect{v}_2 = \left[\begin{array}{c} 2 \\ 1 \\ 1 \\ 0 \end{array} \right]. \end{split}\]

As in Example 8.1.6 we can construct an orthogonal basis for the eigenspace \(E_{3}\):

\[\begin{split} \mathbf{u}_1 = \mathbf{v}_1, \quad \mathbf{u}_2 = \mathbf{v}_2 - \dfrac{\mathbf{v}_2 \ip \mathbf{u}_1}{\mathbf{u}_1 \ip \mathbf{u}_1} \mathbf{u}_1 = \begin{bmatrix} 1 \\ 0 \\ 1\\ -1\end{bmatrix} \end{split}\]

Likewise we can first find a ‘natural’ basis for the eigenspace \(E_{-3}\) by row reducing \((A - (-3I))\):

\[\begin{split} (A - (-3I)) = \left[\begin{array}{cccc}4 & 2 & 2 & 0\\ 2 & 2 & 0 & 2 \\ 2 & 0 & 2 & -2 \\ 0 & 2 & -2 & 4 \end{array} \right] \quad \sim \ldots \sim \quad \left[\begin{array}{cccc}1 & 0 & 1 & -1\\ 0 & 1 & -1 & 2 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{array} \right]. \end{split}\]

Two independent eigenvectors: \(\vect{v}_3 = \left[\begin{array}{c} -1 \\ 1 \\ 1 \\ 0 \end{array} \right]\) and \(\vect{v}_4 = \left[\begin{array}{c} 1 \\ -2 \\ 0 \\ 1 \end{array} \right]\).

Again these can be orthogonalized, and then we find the following complete set of eigenvectors, i.e., a basis for \(\R^4\):

\[\begin{split} \vect{u}_1 = \begin{bmatrix} 1 \\ 1 \\ 0\\ 1\end{bmatrix}, \quad \vect{u}_2 = \begin{bmatrix} 1 \\ 0 \\ 1\\ -1\end{bmatrix}, \quad \vect{u}_3 = \begin{bmatrix} -1 \\ 1 \\ 1\\ 0\end{bmatrix}, \quad \vect{u}_4 = \begin{bmatrix} 0 \\ -1 \\ 1 \\ 1\end{bmatrix}. \end{split}\]

We conclude that \(A = QDQ^{-1}\), where

\[\begin{split} D = \left[\begin{array}{cccc}3 & 0 & 0 & 0\\ 0 & 3 & 0 & 0 \\ 0 & 0 & -3 & 0 \\ 0 & 0 & 0 & -3 \end{array} \right], \quad Q = \dfrac{1}{\sqrt{3}} \left[\begin{array}{cccc}1 & 1 & -1 & 0\\ 1 & 0 & 1 & -1 \\ 0 & 1 & 1 & 1 \\ 1 & -1 & 0 & 1 \end{array} \right]. \end{split}\]

And now it’s time for the proof of the main theorem. The proof is of the type technical and intricate. Skip it if you like.

In the last subsection we will show how the orthogonal diagonalization can be rewritten in an interesting and meaningful way.

8.1.4. The Spectral Decomposition of a Symmetric Matrix.#

Let’s take up an earlier example (Example 8.1.2) to illustrate what the spectral decomposition is about.

Example 8.1.9

For the matrix \(A = \begin{bmatrix} 1&2\\2&-2 \end{bmatrix}\) we found the orthogonal diagonalization

\[\begin{split} A = QDQ^T = \begin{bmatrix} 2/\sqrt{5}& 1/\sqrt{5}\\1/\sqrt{5}& -2/\sqrt{5} \end{bmatrix} \begin{bmatrix} 2 & 0 \\ 0 & -3 \end{bmatrix} \begin{bmatrix} 2/\sqrt{5}& 1/\sqrt{5}\\1/\sqrt{5}& -2/\sqrt{5} \end{bmatrix}^T. \end{split}\]

This is of the form

\[\begin{split} \begin{array}{rcl} A &=& [\,\mathbf{q}_1\,\,\mathbf{q}_2\,]\begin{bmatrix} 2 & 0 \\ 0 & -3 \end{bmatrix} \big[\,\mathbf{q}_1\,\,\mathbf{q}_2\,\big]^T = \big[\,2\mathbf{q}_1\,\,(-3)\mathbf{q}_2\big]\begin{bmatrix}\mathbf{q}_1^T \\ \mathbf{q}_2^T \end{bmatrix}. \end{array} \end{split}\]

We bring in mind the column-row expansion of the matrix product. For two \(2\times 2\) matrices this reads

\[\begin{split} \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \begin{bmatrix} b_{11} &b_{12} \\ b_{21} & b_{22} \end{bmatrix} = \begin{bmatrix} a_{11} \\ a_{21} \end{bmatrix} \begin{bmatrix} b_{11} &b_{12} \end{bmatrix} + \begin{bmatrix} a_{12} \\ a_{22} \end{bmatrix} \begin{bmatrix} b_{21} &b_{22} \end{bmatrix}. \end{split}\]

Applying this to the last expression for \(A = QDQ^T\) we find

\[ A = 2 \mathbf{q}_1\mathbf{q}_1^T + (-3)\mathbf{q}_2\mathbf{q}_2^T . \]

The matrices

\[\begin{split} \mathbf{q}_1\mathbf{q}_1^T = \frac15 \begin{bmatrix} 4 & 2 \\ 2 & 1 \end{bmatrix} \quad \text{and} \quad \mathbf{q}_2\mathbf{q}_2^T = \frac15 \begin{bmatrix} 1 & -2 \\ -2 & 4 \end{bmatrix} \end{split}\]

represent the orthogonal projections onto the one-dimensional subspaces \(\Span{\mathbf{q}_1}\) and \(\Span{\mathbf{q}_2}\).

Furthermore these one-dimensional subspaces are orthogonal to each other.

So we have that this symmetric matrix can be written as a linear combination of matrices that represent orthogonal projections.

The construction we performed in the last example can be generalized. Which is the content of the last theorem in this section.

Theorem 8.1.2 (Spectral Decomposition of Symmetric Matrices)

Every \(n \times n\) symmetric matrix \(A\) is the linear combination

(8.1.4)#\[ A = \lambda_1P_1 + \lambda_2P_2 + \ldots + \lambda_nP_n\]

of \(n\) matrices \(P_i\) that represent orthogonal projections onto one-dimensional subspaces that are mutually orthogonal.

Formula (8.1.4) is referred to as being a spectral decomposition of the matrix \(A\).

Proof of Theorem 8.1.2

For a general \(n\times n\) symmetric matrix \(A\), there exists an orthogonal diagonalization

\[ A = QDQ^{-1} = QDQ^{T}. \]

Exactly as in Example 8.1.9 we can use the column-row expansion of the matrix product to derive

(8.1.5)#\[A = \lambda_1 \mathbf{q}_1\mathbf{q}_1^T + \lambda_2\mathbf{q}_2\mathbf{q}_2^T + \ldots + \lambda_n\mathbf{q}_n\mathbf{q}_n^T,\]

where the vectors \(\mathbf{q}_i\) of course are the (orthonormal) columns of the diagonalizing matrix \(Q\). This is indeed a linear combination of orthogonal projections, as was to be shown.

Exercise 8.1.2

The eigenvalues of the matrix \(A=\begin{bmatrix} 2 & 1 & 0 \\ 1 & 3 & 1\\ 0 & 1& 2 \end{bmatrix}\) are 1, 2 and 4.

Find the spectral decomposition of \(A\).

If in Theorem 8.1.2 the projections onto eigenvectors for the same eigenvalue are grouped together, then the following alternative form of the spectral decomposition results.

Corollary 8.1.1 (Spectral Theorem, alternative version)

Every symmetric \(n \times n\) matrix \(A\) can be written as a linear combination of the orthogonal projections onto its (orthogonal) eigenspaces.

\[ A = \lambda_1 P_1 + \, \ldots \, + \lambda_k P_k, \]

where \(P_i\) denotes the orthogonal projection onto the eigenspace \(E_{\lambda_i}\).

Proof of Corollary 8.1.1

We know that

\[ A = \lambda_1P_1 + \ldots + \lambda_nP_n = \lambda_1\vect{q}_1\vect{q}_1^T + \ldots + \lambda_n\vect{q}_n\vect{q}_n^T. \]

If all eigenvalues \(\lambda_1, \ldots, \lambda_n\) are different that’s just it.

If \(\lambda_i\) is an eigenvalue of multiplicity \(m\) with \(m\) orthonormal eigenvectors \(\vect{q}_1, \ldots, \vect{q}_m\), then

\[ \lambda_i\vect{q}_1\vect{q}_1^T + \,\ldots\,+ \lambda_i\vect{q}_m\vect{q}_m^T = \lambda_i [\,\vect{q}_1\,\,\cdots\,\,\vect{q}_m] [\,\vect{q}_1\,\,\cdots\,\,\vect{q}_m]^T = \lambda_i Q_iQ_i^T. \]

\(P_i = Q_iQ_i^T\) is precisely the orthogonal projection onto the eigenspace \(E_{\lambda_i}\).

The following example provides an illustration.

Example 8.1.10

For the matrix \(A = \begin{bmatrix} 1 & 2 & 2 & 0 \\ 2 & -1 & 0 & 2 \\ 2 & 0 & -1 & -2 \\ 0 & 2 & -2 & 1 \end{bmatrix}\) we had already found the orthogonal decomposition \(A = QDQ^{-1}= QDQ^T\) with

\[\begin{split} Q = \left[\,\vect{q}_1\,\,\vect{q}_2\,\rule[-2ex]{0ex}{5ex}\,\vect{q}_3\,\,\vect{q}_4\,\right] = \dfrac{1}{\sqrt{3}}\left[\begin{array}{cccc} 1 & 0 & 1 & 1 \\ -1 & 1 & 1 & 0 \\ -1 & -1 & 0 & 1 \\ 0 & -1 & 1 & -1 \end{array} \right] \end{split}\]

and

\[\begin{split} D = \left[\begin{array}{cccc} -3 & 0 & 0 & 0 \\ 0 & -3 & 0 & 0 \\ 0 & 0 & 3 & 0\\ 0 & 0 & 0 & 3 \end{array}\right]. \end{split}\]

The spectral decomposition according to Corollary 8.1.1 then becomes

\[ A = (-3) \left[\vect{q}_1\,\rule[-2ex]{0ex}{5ex}\,\vect{q}_2\,\right]\left[\vect{q}_1\,\rule[-2ex]{0ex}{5ex}\,\vect{q}_2\,\right]^T + 3 \left[\vect{q}_3\,\rule[-2ex]{0ex}{5ex}\,\vect{q}_4\,\right]\left[\vect{q}_3\,\rule[-2ex]{0ex}{5ex}\,\vect{q}_4\,\right]^T = \,\,\ldots\,\, = \]
\[\begin{split} = (-3)\begin{bmatrix} 1/3 & -1/3 & -1/3 & 0 \\ -1/3 & 2/3 & 0 & -1/3 \\ -1/3 & 0 & 2/3 & 1/3 \\ 0 & -1/3 & 1/3 & 1/3 \end{bmatrix} + 3 \begin{bmatrix} 2/3 & 1/3 & 1/3 & 0 \\ 1/3 & 1/3 & 0 & 1/3 \\ 1/3 & 0 & 1/3 & -1/3 \\ 0 & 1/3 & -1/3 & 2/3 \end{bmatrix}. \end{split}\]

8.1.5. Grasple Exercises#

Grasple Exercise 8.1.1

https://embed.grasple.com/exercises/f76823e6-8936-4edf-bd0b-fa3a2aa7246f?id=88040

To check whether a matrix \(A\) is symmetric.

Grasple Exercise 8.1.2

https://embed.grasple.com/exercises/9828a4b4-98f7-46c3-8dab-74ac04fc1955?id=88032

To check whether a matrix \(A\) is orthogonal. And, if it is, to give its inverse.

Grasple Exercise 8.1.3

https://embed.grasple.com/exercises/8af926a0-80d8-459f-af55-c37a492a18c6?id=88045

To check whether a matrix \(A\) is orthogonal. And, if it is, to give its inverse.

Grasple Exercise 8.1.4

https://embed.grasple.com/exercises/03d75a31-7e1b-4dd2-be0a-5e9a93a0ef09?id=94940

To give an orthogonal diagonalization of a (2x2) matrix.

Grasple Exercise 8.1.5

https://embed.grasple.com/exercises/926933aa-a33e-40f5-8e70-84bb9ed63fc8?id=87465

To give an orthogonal diagonalization of a (2x2) matrix.

Grasple Exercise 8.1.6

https://embed.grasple.com/exercises/9aac9c37-aa3b-4d5a-bb92-f00c09e5f052?id=94943

To give an orthogonal diagonalization of a (3x3) matrix.

Grasple Exercise 8.1.7

https://embed.grasple.com/exercises/a6a95823-15e4-4354-b89d-559306a5a7fa?id=94941

To give an orthogonal diagonalization of a (3x3) matrix.

Grasple Exercise 8.1.8

https://embed.grasple.com/exercises/0403af25-edba-4bc6-b077-3de227253419?id=56931

To give an orthogonal diagonalization of a (3x3) matrix.

Grasple Exercise 8.1.9

https://embed.grasple.com/exercises/3a45e358-4898-4d1d-b6f4-ba9679dd13e0?id=87765

To give an orthogonal diagonalization of a (3x3) matrix.

Grasple Exercise 8.1.10

https://embed.grasple.com/exercises/eb8b0e2f-d909-47ce-8ef1-50ad67e2b0f6?id=87905

To give an orthogonal diagonalization of a (4x4) matrix.

Grasple Exercise 8.1.11

https://embed.grasple.com/exercises/5ce15529-61a7-43d0-9fd3-5ad5469618e8?id=89131

One step in an orthogonal diagonalization (as in the proof of the existence of an orthogonal diagonalization)

Grasple Exercise 8.1.12

https://embed.grasple.com/exercises/5511e064-f22d-4601-9156-f00545d59f80?id=88649

Sequel to previous question, now for a 4x4 matrix

Grasple Exercise 8.1.13

https://embed.grasple.com/exercises/c994fa76-f723-4700-922b-2f05ff0ef822?id=87760

To give an example of an symmetric 2x2 matrix with 1 eigenvalue and 1 eigenvector given.

Grasple Exercise 8.1.14

https://embed.grasple.com/exercises/4fd8d027-0e63-46ec-aaf5-f2d10d8707c9?id=87038

To give an example of a 3x3 symm matrix with given eigenvalues and eigenspace.

Grasple Exercise 8.1.15

https://embed.grasple.com/exercises/77b08679-8974-453a-8f68-7e08e8ecfaf5?id=94944

Deciding about the spectral decomposition of a 3x3 matrix (with lot of prerequisites laid out).

The following exercise have a more theoretical flavour.

Grasple Exercise 8.1.16

https://embed.grasple.com/exercises/6e0ebf73-fba2-46d0-aaa8-44e53ea07e53?id=88034

To think about symmetric versus orthogonally diagonalizable. (true/false questions)

Grasple Exercise 8.1.17

https://embed.grasple.com/exercises/73c272d7-dbb0-47c9-8bee-074b1f8cc154?id=82845

About the (non-)symmetry of \(A + A^T\) and \(A - A^T\).

Grasple Exercise 8.1.18

https://embed.grasple.com/exercises/7959665f-09d0-4362-a0e8-c0a3e613399f?id=82848

About the (non-)symmetry of products.

Grasple Exercise 8.1.19

https://embed.grasple.com/exercises/33f5be5a-1cfa-4056-ac91-c2282de234b1?id=87864

If \(A\) and \(B\) are symmetric, what about \(A^2\), \(A^{-1}\) and \(AB\)?

Grasple Exercise 8.1.20

https://embed.grasple.com/exercises/59c4c327-1603-4cc1-8b92-7415c691098b?id=87873

True or false. If \(A\) is symmetric, then \(A^2\) has nonnegative eigenvalues. (and what if \(A\) is not symmetric?)